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2.2  Eager Detection of Negative Cycles

 

Even though it is easy to extract a negative cycle once the breadth-first scanning algorithm exceeds it pass count bound, there are applications, such as currency arbitrage, in which the goal is to find a negative cycle rather than one or more shortest paths.  For such an application we would like to stop the scanning process and return a negative cycle as soon as the algorithm creates one.  There are two straightforward ways to do this, one of which is more obvious but less efficient than the other.

 

The high-level idea is to add a test after each tightening of an edge
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 as a result of examining 
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 of whether w is an ancestor of 
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 in the tree defined by the parent pointers.  The most obvious way to do this is to follow parent pointers from 
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 until reaching 
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(giving a negative cycle) or reaching 
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(making 
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 the parent of w does not create a cycle).  The problem with this method is that it can take 
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time per cycle test, and, indeed, one can construct examples for which breadth-first scanning augmented by this form of cycle-testing takes 
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time,increasing the worst-case time bound by a factor of 
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Rather than starting from 
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 and examining ancestors, it is better to start at 
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 and examine descendants.  That is, to test for a negative cycle we traverse the subtree rooted at 
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 If this subtree contains 
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 we have found a negative cycle.  If not, making 
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 the parent of 
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 does not create a cycle.  This method is better than searching through the ancestors of 
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 because, if a negative cycle is not detected we know that every proper descendant of 
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 has incorrect distance label (because there is a shorter path to it through the edge 
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and we can pay for an unsuccessful search by disassembling the subtree rooted at 
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We need to augment the representation of the tentative shortest path tree, since parent pointers do not support traversal of subtrees.  It would suffice to maintain the set of children of each node, but it is simpler, and more efficient, to store a list of the tree nodes in preorder.  Since we need to delete nodes from this list, it seems that we need to make the list doubly-linked.  (Or not? Explore this issue.)  In addition, we need to be able to mark nodes as deleted from the tree.  After the algorithm tightens an edge 
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 if 
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 is not marked, it marks 
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 and initializes 
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 to be the preorder successor of 
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  Then it repeats the following step until 
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 is undefined or
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 is unmarked: if 
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 stop and report a negative cycle; otherwise, mark 
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 delete 
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 from the preorder list, and replace 
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 by its preorder successor.  Finally, whether or not 
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 was marked initially, it unmarks 
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 and inserts 
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 after 
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 in the preorder list (deleting 
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 from its previous position).  The update of 
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also causes 
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 to be added to L if it is not on L already.
 

Each step in a subtree traversal is paid for by the marking of a node; only one node 
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can be unmarked per tightening, so the subtree traversals are paid for by the edge tightenings.  The algorithm maintains the invariant that the unmarked nodes form a tree rooted at 
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 the tentative shortest path tree. Instead of deleting each descendent 
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of 
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 from the preorder list as it is visited, we can repair the preorder list after the traversal by making the final 
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 the preorder successor of the original preorder predecessor of 
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thereby excising all the marked vertices from the list. If we remember the predecessor of 
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we can mark a node by setting its predecessor pointer to null.
It may be useful in this algorithm to modify the scanning order. First, it may be useful to delete vertices from L as they are marked, since scanning them when they have obsolete distance labels is not useful.  The tradeoff is that this requires making L doubly linked.  Or, when deleting a marked vertex from L we can ignore it instead of scanning it. A more drastic version of the same idea is to recompute the distance label of every vertex visited during a subtree traversal, decreasing it by the improvement in 
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 Then we need to add a vertex 
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 to L either when it gets a smaller distance label as a result of the tightening of an arc 
[image: image49.wmf](,),

vw

 or when 
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 is marked and an arc 
[image: image51.wmf](,)

vw

 with 
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is examined.  With this method, whenever a vertex is scanned, its best-available distance is used, and the overhead is still constant per tightening.  (Both of these heuristics can change the scanning order, but not the 
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 bound for breadth-first scanning.)

 

Exercise: Verify the correctness of all variants of the algorithm.  Explore efficient implementations, with the goal of minimizing both the time and space used. For example, if L is implemented as a ring (circular list), 
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 if and only if it has a non-null L-pointer.
 

2.3 Shortest-First Scanning

If all arcs have non-negative lengths, a better scanning order is shortest-first: among vertices on L, delete one with minimum tentative distance.  With this method, when a vertex is scanned its distance is correct, and each vertex is scanned only once.  We can prove this by proving a stronger invariant: all scanned vertices have 
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 no greater than those of all labeled vertices.  This is certainly true initially, since there are no scanned vertices.  Suppose it is true just before the scanning of a vertex 
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 Since 
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 has minimum distance among all labeled vertices, making it scanned preserves the invariant.

Suppose scanning 
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 tightens an arc 
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 Then 
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before the tightening, which implies by the invariant (before the scan) that 
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 is unlabeled or labeled, not scanned.  After the tightening, 
[image: image62.wmf]w

 is labeled and 
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 so the invariant is true after the tightening.  By induction, the invariant holds throughout the computation.

Shortest-first scanning was proposed by Dijkstra. To efficiently implement the algorithm, we represent L by a heap.  There are at most 
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 insert and 
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 delete-min operations on L, and at most 
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 decrease-key operations; tightening an arc results either in an insertion into L (if 
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 is unlabeled) or a decrease-key (if 
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 is labeled).  The algorithm in Dijkstra's paper in effect represents the heap as an unordered set; each insertion or decrease-key takes 
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time (via a traversal of the entire set), giving an overall time bound of 
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 Using a classical heap implementation such as an implicit binary heap results in a time bound of 
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 Using a Fibonacci or equivalently fast heap implementation improves the running time to 
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 matching Dijkstra's bound on dense graphs and the bound for classical heaps on sparse graphs, and beating both asymptotically on graphs of intermediate density. The 
[image: image74.wmf]O(log)

nnm

+

bound is best possible for any implementation of shortest-first scanning that uses binary comparisons, because every arc must be examined to obtain a correct solution, and one can reduce sorting 
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 numbers to a run of shortest-first scanning on a sparse graph.  The bound can be improved if one uses the power of random access, however.  See the remarks in the text.

Another thing worth noting is that the vertices are scanned in non-decreasing order by distance.  This can be proved along with the invariant given above.  That is, L forms a monotone heap in that successive deletions are of larger-and-larger elements.  Monotone heaps are easier to implement than general heaps, at least if one uses bit manipulation or related techniques.  See Andrew Goldberg's work on "hot queues", which give one way to beat the sorting lower bound.

2.4 Topological Scanning

If the graph contains no cycles, whether or not there are any negative arc lengths, a third scanning order is best: scan the vertices in topological order; that is, in an order such that if 
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is an arc, 
[image: image77.wmf]v

 occurs before 
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 A graph is acyclic if and only if it has a topological order.  There are (at least) two algorithms for computing a toplogical order in linear time; One repeatedly deletes a vertex with no incoming arcs, the other uses depth-first search.  Given a topological ordering, topological scanning will compute shortest paths from 
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 in linear time. By taking the negatives of the arc lengths, the same method will compute longest paths.  This is what has been called PERT analysis in the operations research literature.  

3. All Pairs

One way to compute shortest paths for all pairs of source and destination vertices is to use dynamic programming, which results in a very simple 
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 algorithm called the Floyd-Warshall method.  I shall describe a bare-bones version that just computes distances, not shortest paths; it can easily be augmented to compute paths.  The method needs 
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space.  Initialize 
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 for every vertex 
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not an arc. Then perform the following triple loop: for each vertex 
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 do for each vertex 
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 do for each vertex 
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 do if 
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replace 
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 The algorithm maintains the invariant (in the absence of negative cycles) that, after each execution of the outer loop, 
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is the length of the shortest path from 
[image: image96.wmf]u

 to 
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 having as intermediate vertices only vertices for which the outer loop has been executed.  Also, there is a negative cycle if and only if 
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 for some vertex 
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 by the end of the algorithm.

Although this algorithm is very simple, it does not exploit sparsity very well.  To exploit sparsity better, one can adapt Gaussian elimination to compute all-pairs shortest paths.  First, one computes the equivalent of an LU factorization, and then, for each source, one does in effect two single-source shortest path computations on acyclic graphs, the equivalent of backsolving.  I leave the details to the ambitious among you.

Another way to solve the all-pairs problem is to solve 
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 single-source problems.  If there are negative arc lengths (but no negative cycles), this method becomes much more efficient by solving one single-source problem with the original lengths and then using the computed distances to transform the arc lengths so that they are all non-negative, without affecting shortest paths.  Specifically, for any real-valued function
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on the vertices, define the transformed length 
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of an arc 
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with respect to
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to be 
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 Observe that if 
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 is any path from 
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 to 
[image: image108.wmf],

y

 
[image: image109.wmf]()()()(),

cpcpfxfy

¢

=+-

 since all the values of 
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 on intermediate vertices along the path contribute to 
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both positively and negatively, and cancel out.  That is, the transformed cost of a path is the same as the original cost, plus a value that depends only on the source and destination vertices.  This means that shortest paths remain shortest (and cycle lengths do not change).  Having computed distances with respect to a set of transformed arc lengths, we can map each such distance back to the original lengths in constant time (by subtracting f of the source and adding 
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 of the destination).  Such a function 
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 is in fact the set of dual variables in the linear-programming sense for the shortest path problem.

A function 
[image: image114.wmf]f

 that makes all transformed lengths non-negative (assuming no negative cycles) can be computed as follows.  Assume all vertices are reachable from 
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 (If not, add a dummy source with zero-length arcs to all vertices.)  Solve a single-source shortest path problem with source 
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 and let d be the resulting distance function.  Then 
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 for every arc 
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 that is, 
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 Thus 
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 is a suitable 
[image: image121.wmf].

f


By doing one run of breadth-first scanning, then using the resulting distances to transform the arc costs to make them non-negative, and then doing 
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 runs of shortest-first scanning, we can solve the all-pairs problem in 
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time, which beats the Floyd-Warshall bound except for very dense graphs.

4. Single Pairs: Heuristic Search

One of the most important forms of the shortest path problem is the single-pair problem.  Consider a situation in which we are given a huge graph, possibly only specified implicitly (an algorithm is given that will compute the arcs leaving a specified vertex, along with their lengths), and we wish to solve one or more single-pair problems on-line.

In such a situation we would like to find a shortest path without exploring the entire graph, in sub-linear time.  We may (or may not) be able to do some off-line preprocessing to compute some global information about the graph that helps to speed up distance queries.  This is the “driving directions” problem, which has become a hot area of research.  In the driving directions problem we are given the graph explicitly and queries come on-line; we can do preprocessing to speed up the queries.  A different version of the problem, in which there is only a single query and the graph is given implicitly, was considered in the classical artificial intelligence literature many years ago and gave rise to an important idea, heuristic search.

In heuristic search, we are given some easy-to-compute estimate 
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ev

of the distance from a given vertex to the destination.  We use shortest-first scanning, but instead of scanning a labeled vertex with minimum 
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we scan a labeled vertex with minimum 
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 this is an estimate of the length of the shortest path from 
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 to 
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 that goes through 
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 and we prefer vertices estimated to be on short paths.  As intuition, observe that if the 
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 are exact distances and there are no ties, then heuristic search will scan exactly the vertices on the shortest path from 
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 to 
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 and no others.  In general the worse the estimate 
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 the more vertices will be scanned.

For arbitrary estimators 
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 there is no guarantee that heuristic search has the same behavior as shortest-first search in that vertices are only scanned once.  But we can place a natural condition on 
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 that does guarantee this.  The condition is another application of the arc-length transformation discussed in Section 3.  Heuristic search is equivalent to shortest-first search using the transformed arc costs 
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 (Verify this.)  Thus if (*) 
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 for every arc 
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 heuristic search will scan each vertex at most once, and we can stop the algorithm as soon as 
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 is deleted from L, at which time its distance will be correct.  We call an estimate that satisfies (*) a safe estimate.  We can assume that 
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 if not, we can use 
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 in place of 
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 without affecting the behavior of the algorithm.  Given 
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 if 
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 is a safe estimate, then 
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is a lower bound on the actual distance from 
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 to 
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(Verify this.)  The identically zero function is a (trivial) safe estimate.  One can show that if 
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 and 
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 are safe estimates and 
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 for every vertex 
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 then heuristic search using 
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 will scan a subset of the vertices scanned by heuristic search using 
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 if ties are broken in the same way.  (Verify this.)  If a non-safe estimate is used, one has a choice: stop when 
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 is first deleted from L, resulting in a non-necessarily shortest path from 
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 to 
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 or continue scanning.  The heuristic search literature discusses the use of non-safe estimates as well as safe ones; the trade-off is that a non-safe estimate may result in fewer scans but a less accurate solution (if scanning stops when 
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 is deleted from L).  It is an interesting, challenging, and problem-dependent task to devise an accurate but easy-to-compute estimate for use in heuristic search.  In the case of road networks, one proposed estimate is based on precomputing shortest paths to a collection of sentinal vertices; if 
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 is a sentinal, 
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 is a safe estimator.  (Verify this.)  Sentinal-based estimates can be combined (how?); the more sentinals, the better the estimate, but the more costly the precomputation and the computation of the estimate.

Another useful technique in the single-pair problem is bidirectional search: search from 
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 toward 
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 and from 
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 backward toward 
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 concurrently, stopping when the two searches meet.  One must take care with this method to get the stopping rule correct, especially in the case of bidirectional heuristic search.  
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